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Breast cancer is the most common type of cancer among women in the western world. While
mammography is regarded as the most effective tool for the detection and diagnosis of breast
cancer, the interpretation of mammograms is a difficult and error-prone task. Hence, computer aids
have been developed that assist the radiologist in the interpretation of mammograms. Computer-
aided detection �CADe� systems address the problem that radiologists often miss signs of cancers
that are retrospectively visible in mammograms. Furthermore, computer-aided diagnosis �CADx�
systems have been proposed that assist the radiologist in the classification of mammographic le-
sions as benign or malignant. While a broad variety of approaches to both CADe and CADx
systems have been published in the past two decades, an extensive survey of the state of the art is
only available for CADe approaches. Therefore, a comprehensive review of the state of the art of
CADx approaches is presented in this work. Besides providing a summary, the goals for this article
are to identify relations, contradictions, and gaps in literature, and to suggest directions for future
research. Because of the vast amount of publications on the topic, this survey is restricted to the two
most important types of mammographic lesions: masses and clustered microcalcifications. Further-
more, it focuses on articles published in international journals. © 2009 American Association of
Physicists in Medicine. �DOI: 10.1118/1.3121511�
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I. INTRODUCTION appearance in mammograms is a difficult task even for ex-
According to the American Cancer Society,1 breast cancer is
the most common type of cancer among women in the
United States and accounts for more than 25% of all cancers
diagnosed in US women. Mammography is regarded as the
most effective tool for breast cancer detection and diagnosis
available today. However, mammogram interpretation is a
repetitive and thus an error-prone task. This leads to 10%–
30% of all cancers to be missed by radiologists. One possible
solution to this problem are computer-aided detection
�CADe� systems that automatically detect suspicious lesions
in mammograms, which otherwise might have been missed
by the radiologist and serve as a reminder by pointing out
their location. For a survey of the state of the art of CADe
systems, the reader is referred to a recent review article by
Nishikawa.2

Based on the inspection of mammograms and often
supplemental ultrasound and magnetic resonance images, ra-
diologists give a recommendation for the subsequent patient
management. Based on the level of suspicion of malignancy
of the lesions found in the mammograms, usually a recom-
mendation is made for a short- or long-term follow-up ex-
amination or �in the case of higher suspicion of malignancy�
for a breast biopsy �invasive removal and pathological test-
ing of a suspicious area of the breast�. However, the charac-
terization of lesions as benign or malignant based on their
2052 Med. Phys. 36 „6…, June 2009 0094-2405/2009/36„6…/
pert radiologists. Because a mammogram is a two-
dimensional image of a three-dimensional breast, superposi-
tion of breast tissue often produces patterns that appear like
suspicious masses to a radiologist or alters the appearance of
real mammographic lesions. Furthermore, lesions with typi-
cally malignant characteristics sometimes may represent be-
nign lesions and vice versa. It is reported that usually less
than 30% of all breast biopsies actually show a malignant
pathology.3–7 The high number of unnecessary breast biop-
sies causes major mental and physical discomfort for the
patients as well as unnecessary expenses spent for examina-
tions. Therefore, computer-aided diagnosis �CADx� systems
have been proposed in the past years with the aim to support
radiologists in the discrimination of benign and malignant
mammographic lesions and to increase the positive predic-
tive value �PPV� of mammogram interpretation. The PPV
measures the percentage of breast biopsies that are tested
positive for cancer. Furthermore, CADx systems can poten-
tially improve the sensitivity of mammography because ap-
proximately half of all missed cancers seem to be missed due
to misclassification rather than due to oversight.8 While a
large amount of CADx approaches can be found in literature,
no comprehensive review of the state of the art seems to
exist. Therefore, this work provides a review of the state of
the art of the computer-aided discrimination of benign and
20522052/17/$25.00 © 2009 Am. Assoc. Phys. Med.
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Starting with an overview of approaches for the segmenta-
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malignant mammographic lesions. More precisely it concen-
trates on the most important types of mammographic lesions,
masses, and clustered microcalcifications, and does not cover
less common types like architectural distortions. Care has
been taken to make this review as complete as possible.
However, because of the vast amount of publications on the
topic, the focus is on articles published in international jour-
nals.

The task of discriminating benign and malignant lesions is
usually modeled as a two-class classification problem. Most
approaches start with a region of interest �ROI� depicting the
lesion that shall be classified. The ROI may have been delin-
eated manually by a radiologist or automatically by a
computer-aided detection system. It usually is a rectangular
subimage cut from a mammogram. Most CADx systems
have a four-stage process: lesion segmentation, feature ex-
traction, feature selection, and finally classification. Figure 1
shows a flowchart of a typical CADx system.

Often one or more stages of the process illustrated in Fig.
1 are omitted by CADx systems. For example, in many sys-
tems, no automatic selection of features is done, while other
approaches do not require an explicit segmentation of the
lesion from the background tissue in the ROI. Furthermore,
some approaches use multiple ROIs containing the lesion cut
from different mammographic projections �e.g., craniocrau-
dal �CC� and mediolateral oblique �MLO��, from additional
modalities �like ultrasound�, or from previous examinations
�temporal change analysis�. In these approaches, lesion seg-
mentation and feature extraction are usually done indepen-
dently in all ROIs containing the lesion. Finally, many CADx
approaches use clinical data like the patient’s age as addi-
tional features. These features are not extracted from the ROI
containing the lesion but instead from, usually textual, anno-
tations containing information about the whole case.

The organization of the rest of this work closely follows
the design of typical CADx systems, as illustrated in Fig. 1.
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FIG. 1. Illustration of the design of a typical CADx system. Borders of
optional inputs and optional processing steps are dotted.
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tion of clustered microcalcifications and mammographic
masses in Secs. II and III, respectively, we proceed with a
review of the various methods that are employed for the
automatic extraction of features representing attributes of
clustered microcalcifications and mammographic masses in
Secs. IV and V, respectively. While the methods employed
for lesion segmentation and feature extraction differ for clus-
tered microcalcifications and mammographic masses, ap-
proaches for the remaining steps of feature selection and
classification usually can be applied to both lesion types.
Therefore, no differentiation by lesion type is made in the
reviews of methods for these steps. A survey of state of the
art approaches is given in Secs. VI and VII, respectively.

In Secs. VIII and IX, special topics, CADx using temporal
change analysis and multiview/multimodal CADx, are dis-
cussed. Furthermore, besides CADx approaches that employ
features that are automatically extracted by a computer, al-
ternative CADx approaches that instead use features that are
manually extracted by the radiologist have been proposed in
the past years. Hence, this review also covers the discrimi-
nation of mammographic lesions using human-extracted fea-
tures. CADx systems of this type usually have a similar de-
sign as systems using computer-extracted features as
described above. However, because of using human-
extracted features, the segmentation step is not necessary.
Furthermore the extraction of features is done manually by
the radiologist instead of automatically by the CADx system.
Because of these differences, an outline of the state of the art
of CADx approaches using human-extracted features is pro-
vided separately in Sec. X. This work closes with an over-
view of CADx system evaluation in Sec. XI and a summary
and conclusion in Sec. XII.

II. SEGMENTATION OF MICROCALCIFICATIONS

The morphology and the distribution of individual micro-
calcifications in a cluster are the most important attributes
considered by radiologists for the discrimination of benign
and malignant types of this kind of lesion. The segmentation
of individual microcalcifications in a ROI depicting a micro-
calcification cluster is a crucial prerequisite for the automatic
extraction of features representing these attributes. A large
variety of approaches to the segmentation of microcalcifica-
tions can be found in literature and thus only a brief over-
view of the most important approaches is given here. While
the focus of this work is on the diagnosis and not on the
detection of mammographic lesions, several calcification
segmentation approaches that were originally proposed for
the detection of calcification clusters are discussed. The rea-
soning is that most computer-aided detection systems for
clustered microcalcifications have two steps: �i� Segmenta-
tion of individual calcification particles in a mammogram
and �ii� detection of clusters by an analysis of the spacial
distribution of the particles. The first step of these CADe
approaches usually is feasible for the segmentation of calci-
fication particles in a ROI instead of a full mammogram too.
CADx systems usually work on ROIs containing a single



II.C. Wavelet transform
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cluster of calcifications. The segmentation task consists of
automatically finding all individual calcifications and of the
pixel-exact delineation of their shape. Figure 2�b� illustrates
the results of a segmentation of the individual particles in the
microcalcification cluster ROI displayed in Fig. 2�a�.

II.A. Semiautomatic methods

Early approaches to the problem often have been semiau-
tomatic and included a mandatory manual step. For example,
Shen et al.9 proposed a technique based on region growing
that requires the radiologist to manually select a seed pixel
for each microcalcification particle. A similar approach was
proposed by Jiang et al.10 who fitted a third-degree polyno-
mial surface to reduce background tissue and applied a gray-
level based region-growing algorithm afterward. A more re-
cent semiautomatic approach, proposed by Paquerault et al.
in 2004,11 also requires manual selection of calcification seed
points and is based on a transformation into polar coordi-
nates, followed by an analysis of the radial gradient map.

II.B. Low-level features

Other early approaches determine whether a pixel belongs
to a microcalcification or the background based on simple
criteria like high absolute gray levels or high local
contrast.12,13 However, these approaches tend to fail when
microcalcifications are embedded in dense background tis-
sue. Schmidt et al.14 tried to avoid this problem by combin-
ing the enhancement in high-local-contrast areas with a re-
duction in background tissue using a fitted polynomial.

FIG. 2. An example of a ROI depicting a microcalcification cluster �a� and
the result of an automatic segmentation of the individual calcification par-
ticles from the background tissue and each other �b�.
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Because of their small size and their high degree of local-
ization, microcalcifications represent high-spatial frequencies
in the image. The wavelet transform is an attractive option
for the detection of high-spatial-frequency components of an
image because it can spatially localize high-frequency com-
ponents. Hence, it was used by many authors for the segmen-
tation of microcalcifications.15–27 The general idea of these
approaches is to decompose a ROI into its subbands using
the wavelet transformation and to weight the coefficients of
the subbands so that microcalcifications are enhanced, and
background tissue, as well as noise, is suppressed once the
inverse wavelet transform is applied to the data.

II.D. Laplacian of Gaussian

Microcalcification particles appear as bright spots in
mammograms. A common approach for the detection of
bright spots in images, also referred to as “blob detection” in
the computer-vision literature, is based on the Laplacian of
Gaussian �LoG� filter. Bright spots correspond to local
maxima in an image if it is convolved with a LoG filter
kernel of an appropriate size. Netsch and Peitgen28 exploited
this observation and proposed to identify the position and
size of individual calcification particles using a LoG scale-
space representation of a mammogram. The LoG operator
can be computed in an alternative, more efficient way as the
limit case of the difference between two Gaussian smoothed
images. This approach is usually referred to as the difference
of Gaussians �DoG� approach and is used by Salfity et al. for
microcalcification segmentation.29

II.E. Morphological operators

Another class of approaches for microcalcification seg-
mentation is based on mathematical morphology, more pre-
cisely on gray-level morphological operators. Nishikawa
et al.30 combined morphological erosion operators with a
difference image technique to segment calcification particles.
Betal et al.31 as well as Fu et al.32 used the so-called top-hat
operator �which is defined as a subtraction of a morphologi-
cally opened image from the original image�, followed by
edge detection and flood filling for calcification segmenta-
tion. Finally, as early as 1993 Dengler et al.33 proposed a
combination of a DoG operator and a top-hat operator for the
localization and exact delineation of microcalcifications, re-
spectively.

II.F. Miscellaneous methods

There are a variety of methods using miscellaneous tech-
niques that do not fit into the categories discussed so far.
Examples are the approaches by Ibrahim et al.34 who used a
triple ring filter, Linguraru et al.35 who used a biological
model of contrast detection and Nakayama et al.36,37 who
employed filter banks. A few approaches to calcification
segmentation38–40 are based on modeling the background tis-
sue and the ductal patterns of a mammogram using a fractal
model. Because the fractal model fails to adjust to the high-



TABLE I. Summary of strengths and weakness of the classes of microcalcification segmentation methods mentioned in this section.
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frequency image components that represent calcification par-
ticles, a calcification image can be obtained by subtracting
the model from the original image. Some researches employ
fuzzy-logic techniques for the segmentation of microcalcifi-
cations. Cheng et al.41 proposed to employ fuzzy set theory
and geometrical statistics to increase the contrast of, and fi-
nally segment, microcalcifications. Verma and Zakos42 pro-
posed a semiautomatic calcification segmentation approach
based on simple fuzzy-logic rules.

II.G. Preprocessing

The noise levels in mammograms strongly depend on the
brightness in different image regions. Bright regions that rep-
resent dense �e.g., glandular� tissue usually have higher noise
levels than regions representing less dense �e.g., fatty� tissue.
Hence, microcalcification segmentation often involves
thresholds that are adaptive to the local noise level. As an
alternative to adaptive thresholds, several researchers pro-
posed preprocessing steps that equalize the noise level in
mammograms. Karssemeijer was the first to propose a noise
equalization approach for screen-film mammograms in
1993,43 which was later extended by Veldkamp and
Karssemeijer44 as well as Netsch and Peitgen.28 Finally, in
2004 McLoughlin et al.45 proposed an approach for noise
equalization especially targeted toward modern full-field-
digital mammograms.

II.H. Discussion

Despite the multitude of approaches and their consider-
able success, the problem of segmenting individual microcal-
cification particles in a ROI is not completely solved. The
automatic delineation of the contours of particles with low
contrast to the background tissue remains a major challenge.
High noise levels in some mammograms and curvy-linear
structures �like ducts and vessels� also complicate the calci-
fication segmentation task. Furthermore, many approaches
have only been evaluated on small and/or proprietary data
sets and direct comparisons of the performance of competing
methods on the same set of data are rarely provided. More-
over, lesion segmentation approaches are usually evaluated
indirectly by comparing the classification performance of a
full CADx system using different segmentation modules.
This is due to the fact that acquiring pixel-exact ground truth
for the segmentation task is very difficult because of the
number, small size, and low contrast of the calcification par-

Method class Interaction Strength

Semiautomatic Some to intense Accurate number

Threshold, contrast None to some Very simple a

Wavelets None Exact shape of
LoG, DoG None Simple model, ex

Morphology None Exact shape of
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ticles in a cluster. However, a standalone evaluation and
comparison of segmentation approaches based on pixel-exact
ground truth would allow to compare the performance of
different approaches independent of the other modules �e.g.,
feature extraction and selection� of a CADx system.

Both the LoG and DoG approaches return the position
and size but not the exact shape of individual particles.
Hence, often a second segmentation step that returns the
shape of a particle based on its position and size is em-
ployed. In contrast, approaches based on morphological op-
erations or the wavelet transform are more suited for return-
ing the exact shape of individual particles. Furthermore,
noise equalization or adaptive thresholds seem to be crucial
aspects for successful segmentation of microcalcifications
due to the heterogeneous noise levels present in mammo-
grams. Table I provides a summary of the qualitative
strengths and weaknesses of the classes of microcalcification
segmentation methods mentioned in this section.

III. SEGMENTATION OF MAMMOGRAPHIC MASSES

The shape and the margin characteristics of mammo-
graphic masses are crucial features for the discrimination of
benign and malignant forms of this lesion type. Given a ROI
containing a mammographic mass, most techniques for the
extraction of features that represent characteristics of a mass’
shape or margin require a segmentation of the mass from the
background tissue. However, compared to the segmentation
of microcalcifications, the segmentation of masses is more
difficult because of their often fuzzy and highly irregular
contours and their low contrast. Similar to the state of the art
of microcalcification segmentation, a large variety of ap-
proaches to the problem of mass segmentation have been
proposed in the past two decades. Hence, an overview and
taxonomy of a representative selection of methods is given in
this section. Figure 3�a� is an example of a ROI depicting a
mammographic mass and Fig. 3�b� shows the results of an
automatic segmentation of the mass from the background
tissue. Part of the lesion’s margin is obscured by tissue su-
perpositions; a major challenge for automatic mass segmen-
tation approaches.

III.A. Semiautomatic methods

Especially in early CADx approaches,46,47 the segmenta-
tion problem was solved totally or partially by hand: Mass
borders are outlined by hand or using semiautomatic pro-

Weaknesses

rticles Can be time consuming, in some cases almost
impossible, high interobserver variability

st Often fail in case of dense background tissue, high inter
observer variability

cles Moderately accurate at acceptably low FP rates
cations Model fits Gauss-shaped particles only
cles ¯
s

of pa

nd fa

parti
act lo
parti



tation approach based on pixel-by-pixel K-means clustering.
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cesses that require mandatory manual steps. An example for
semiautomatic approaches is the work by Kilday et al.48 who
manually applied gray-level thresholds.

III.B. Region growing

Region growing is one of the methods that was most often
applied to the segmentation of masses. It is a bottom-up seg-
mentation method in which, starting from a seed pixel,
neighboring pixels are iteratively added to the foreground
region if they fulfill a similarity criterion. Many variations in
the basic region growing approach have been proposed for
the segmentation of masses. Giger et al.49 proposed a semi-
automatic region-growing approach. Huo et al.50 later auto-
mated this approach by automatic background correction and
seed point definition. Kupinski and Giger51 proposed two
region-growing approaches based on the radial gradient in-
dex �RGI� and a probabilistic model, respectively. Petrick
et al.52 combined a contrast enhancement filter and region
growing for the segmentation of masses. Sahiner et al.53 ap-
plied region growing as a postprocessing step for a segmen-

FIG. 3. An example of a ROI depicting a mammographic mass �a� and the
results of an automatic segmentation of the mass from the background tissue
�b�. Part of the lesion’s margin is obscured by tissue-superpositions; a major
challenge for automatic mass segmentation approaches.
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Mendez et al.54 as well as Pohlman et al.55 also applied
region growing to the segmentation of masses. Finally,
Guliato et al.56 combined fuzzy set theory and region grow-
ing in a method that takes the uncertainty, present at the
boundaries of tumors, into account.

III.C. Active contours

In contrast to region-based approaches, which divide the
ROI into mass and background pixels, contour-based ap-
proaches try to detect the mass’ boundary. A variety of
contour-based approaches for mass segmentation are based
on active contour models �also called dynamic contours�.
The general idea of dynamic contour models is to approxi-
mate the boundary of a mass by minimizing the energy func-
tion of a closed contour consisting of connected line seg-
ments. The energy function usually has internal and external
energy terms. The internal energy represents the curvature of
the contour, while the external energy represents image fea-
tures like the presence of edges. Active contour approaches
strongly depend on the choice of the initial contour. te Brake
and Karssemeijer57 proposed a discrete dynamic contour
model that was initialized with a circular contour of a fixed
size. Sahiner et al.58,59 initialized an active contour model
with an initial contour obtained using K-means clustering.

III.D. Level sets

Level set approaches are a class of segmentation methods
that are related to active contour models. In fact these ap-
proaches are sometimes referred to as implicit active con-
tours in literature. Rather than evolving a contour itself, in
level set approaches, a contour is represented as the zero
level of a higher-dimensional scalar function. A two-
dimensional contour for example can be represented by the
zero level of a three-dimensional cone-shaped surface. The
surface is designed such that its intersection with the
xy-plane matches the represented contour. The main advan-
tage of level set approaches over traditional active contour
models is that they can easily handle topological changes
like splitting or merging of parts of the contour. Shi et al.60

recently proposed a level set approach for mass segmentation
with an initial contour obtained by K-means clustering. Yuan
et al.61 initialized a level set approach using a contour ob-
tained using the radial gradient index approach earlier pro-
posed by Kupinski and Giger.51 Their approach furthermore
employs background trend correction and a dynamic stop-
ping criterion.

III.E. Dynamic programming

Timp and Karssemeijer62 proposed a segmentation ap-
proach based on boundary tracing using dynamic program-
ming that guarantees resulting contours to be closed. A key
component of dynamic programming approaches for the de-
lineation of a contour is the cost function, which is employed
to obtain the path that most efficiently represents the contour
of the object that is to be delineated. Timp and Karsse-



TABLE II. A summary of strengths and weaknesses of the classes of mass segmentation methods considered in this section.
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meijer’s approach was later applied by Varela et al.63 and
recently extended by Dominguez and Nandi,64 who proposed
two modified versions of the method that achieve superior
performance by modifications to the cost function.

III.F. Discussion

While encouraging progress was made in the segmenta-
tion of mammographic masses in the past years, the task
cannot be considered to be solved. In fact this is even less the
case for mammographic masses than for microcalcifications.
An inherent property of x-ray mammography—three-
dimensional anatomical structures are projected onto a two-
dimensional image plane—probably is the main cause for the
complexity of mass segmentation in mammograms. As pre-
viously discussed in the section on calcification segmenta-
tion, more comparative studies of the performance of com-
peting segmentation approaches are needed. Such studies
require reference databases with pixel-exact ground truth and
standardized performance metrics. While Timp and
Karssemeijer,62 for example, used a criterion, which simply
measures the overlap of the automatically segmented area of
a mass and the ground truth area defined by a radiologist,
Dominguez and Nandi64 employed a metric that combines an
overlap criterion with measures of under- and oversegmen-
tation. Fortunately, there are already some studies that di-
rectly compare different mass segmentation approaches. te
Brake and Karssemeijer57 compared their discrete dynamic
contour approach with the region-growing approaches pro-
posed by Kupinski and Giger.51 Timp and Karssemeijer62

compared their dynamic programming approach with both an
active contour and a region-growing method. The mean over-
lap percentage for the proposed dynamic programming was
0.69, for the other two methods 0.60 and 0.59, respectively.
Shi
et al.60 compared a level set and an active contour approach
and found the level set approach to significantly outperform
the active contour method. Yuan et al.61 compared the per-
formance of their level set approach with the RGI approach
proposed by Kupinski and Giger.51 They employed the per-
centage of correctly segmented ROIs for a given overlap
threshold and found the level set approach to outperform
RGI at a threshold of 0.4 with 85% compared to 73%. How-
ever, a direct comparison of the performance of novel ap-
proaches is still hard to achieve, given the fact that rarely
source code for proposed methods is made publicly available
for research purposes. Table II provides a summary of the

Method class Interaction Strength

Drawing manually Intense Can be very a
Adjusting manually Low to medium Less cumbersome, can

Region growing None to some Simple implementation, e
Active contours None Closed con

Level sets None Closed contours, flexible to
Dyn. programming None Very flexible via �combinati
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qualitative strengths and weaknesses of the classes of mass
segmentation methods mentioned in this section. Given the
inherent difficulties of mass segmentation, it is questionable
that a fully automatic and at the same time robust approach
to the problem can be found. This implies that minimally
interactive solutions, which provide simple but effective
ways for the radiologist to adjust the segmentation results,
might be a reasonable direction for future research.

IV. FEATURE EXTRACTION FOR CLUSTERED
MICROCALCIFICATIONS

In this section a survey of feature extraction methods,
which have been proposed for the characterization of clus-
tered microcalcifications, is provided. Radiologists usually
characterize microcalcification clusters based on the mor-
phology and location of the cluster, the morphologies of the
individual calcification particles, and the distribution of the
particles within the cluster. Most approaches to the automatic
characterization of calcifications mimic the radiologist’s
strategy, and hence, four major classes of features for the
discrimination of microcalcification clusters can be identi-
fied: Features that represent the morphology and location of
the cluster, features that characterize the morphology and
optical density of the individual calcification particles, fea-
tures that describe the spatial distribution of the individual
particles within the cluster, and finally features that represent
the texture of the background tissue the calcifications are
embedded in. The rest of this section is structured based on
this taxonomy.

IV.A. Morphology of the cluster

Several researchers proposed to calculate the convex hull
of the centroids or the contour pixels of the particles in a
cluster as a representation of the cluster’s shape.14,31,65 Based
on this shape representation, the area and the perimeter as
well as the circularity, rectangularity, orientation, and eccen-
tricity of the cluster can be obtained.31,65 Moreover, normal-
ized central moments are often obtained from a shape repre-
sentation of the cluster.66 A basic feature that describes the
morphology of a microcalcification cluster is the number of
individual calcification particles in the cluster which can
trivially be obtained from a segmentation of the individual
calcifications; it is employed by almost all approaches to the
characterization of calcification clusters �e.g., Refs. 10, 12,
31, 65, 67, and 68�. Besides the number of calcifications,
often the calcification coverage, which is defined as the ratio

Weaknesses

te Cumbersome, high interobserver variability
ry accurate High interobserver variability

comprehend Fuzzy borders can easily cause leakage
Initial contour critical

logical changes Initial contour critical, computationally expensive
� cost functions Often no closed contours, computationally expensive
s
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of the sum of the individual calcification areas and the clus- IV.E. Distribution of individual calcifications
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ter area, is used to describe how densely packed a cluster is
with calcifications.

IV.B. Location of the cluster

The probability of malignancy of lesions like calcification
clusters also depends on their location in the breast. For ex-
ample, it is a well established fact that malignant lesions are
more often located in the upper outer quadrant than other
quadrants of the breast.69 Thus, some approaches obtain fea-
tures that are based on the location of a microcalcification
cluster in the mammogram. Veldkamp et al.67 for example,
proposed to use the relative distance of a cluster to the pec-
toral muscle and the breast edge as discriminative features.
Note that location-based features usually require a robust
segmentation of landmarks �like the mamilla, pectoral
muscle, and breast boundary� in the mammograms, which is
a nontrivial problem of its own.

IV.C. Morphology of individual calcifications

Instead of features describing the morphologies of indi-
vidual calcification particles, usually the statistics �like the
mean, standard deviation, minimum, maximum, or median�
of features of the individual particles in a cluster are ob-
tained. For example, often the means and standard deviations
of the areas, perimeters, circularities, rectangularities, orien-
tations, and eccentricities of the particles are
employed.10,12,13,32,36,65–67 Furthermore, the means and stan-
dard deviations of the individual normalized central mo-
ments as well as of the moments of the border pixels are used
by some researchers.9,32,66,70,71 Moreover, Betal et al.31 pro-
posed to use mathematical morphology to analyze the shape
of calcification particles and extracted the features represent-
ing the number of in-foldings, the elongation as well as nar-
row and wide irregularities of particles using this approach.
Note that the accuracy of features describing the morphology
of individual particles requires a robust segmentation and
due to the discrete nature of images generally decreases with
decreasing size of the particles. Shen et al.9 proposed to use
features based on normalized Fourier descriptors of the con-
tours of calcifications as descriptions of the shape of indi-
vidual particles. This approach was later employed by
others.66 Yet another method for the description of the shape
of calcification particles was proposed by Bocchi and Nori,71

who derived transformation and rotation invariant shape fea-
tures using the Radon transform.

IV.D. Optical density of individual calcifications

The optical density of calcification particles is often char-
acterized by statistics of the mean and variance of the gray
values as well as the contrast of individual
particles.12,14,31,65,67,70 Furthermore, Jiang et al.10 proposed to
measure the effective thickness and volume of individual
particles based on a mathematical model of image formation.
They found the standard deviations of the effective thick-
nesses and volumes to be useful discriminants.
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Basic features describing the spatial distribution of the
particles within a cluster are statistics �again usually the
mean and standard deviation� of the distances between indi-
vidual particles12,14 as well as the distances of the particle
centroids to the cluster centroid.31,65 Also sometimes em-
ployed are the eccentricity and the normalized central mo-
ments of the particle centroids. A more complex approach
was proposed by Leichter et al.,13 who obtained the mean
number of nearest neighbors of the particles in a cluster us-
ing a two-dimensional Delaunay triangulation of the particle
centroids.

IV.F. Texture of the background tissue

Several approaches to the discrimination of benign and
malignant microcalcification clusters assume that the pres-
ence of calcifications alters the texture of the tissue surround-
ing the calcifications. Furthermore, some approaches pre-
sume that the pixel pattern of calcification particles in a
cluster itself can be represented by textural features. There-
fore, the use of texture features has been proposed for the
classification of calcification clusters. A brief overview of the
most commonly employed texture feature extraction meth-
ods is given here. Note that for the extraction of texture
features, a segmentation of the individual calcification par-
ticles is not necessary. Hence, this group of features, in con-
trast to the features described so far, does not depend on the
robustness of the employed segmentation approach.

Probably the most popular class of texture features are
those derived from gray-level co-occurrence matrices, which
represent second-order statistics of the gray levels in a ROI,
as described by Haralick et al.72 They are employed to char-
acterize microcalcifications by a broad range of
researchers.12,32,70,73–75 Texture analysis based on wavelet
packets was first proposed by Laine and Fan76 and is em-
ployed for microcalcification characterization by some
groups.12,70 Furthermore, Soltanian et al.70 compared the dis-
criminative power of standard wavelet packet features with
multiwavelet packet features and found the latter, which use
multiple scaling functions and mother wavelets, to be supe-
rior.

IV.G. Discussion

A broad variety of features for the characterization of mi-
crocalcifications have been developed in the past years. The
number of particles, their shape, and their distribution within
the cluster seem to have high discriminative power. How-
ever, due to the lack of direct comparisons of the features
developed by different research groups on the same data,
exact quantitative comparisons are hardly possible. Hence,
we see a demand for a study that compares a broad range of
features from different feature groups �morphology, distribu-
tion, optical density, and texture of the background� on a
large, public dataset. Such a study would allow researches to
directly compare the discriminative power of newly devel-
oped features with the state of the art. Furthermore, ap-



proaches to microcalcification segmentation often have lim- features extracted from the untransformed band of pixels.
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ited success in exactly delineating the shape of individual
calcification particles; hence more researches seem to be nec-
essary to measure the robustness of shape features against
segmentation errors.

V. FEATURE EXTRACTION FOR
MAMMOGRAPHIC MASSES

This section contains a survey of feature extraction meth-
ods for mammographic masses. Similar to the situation re-
garding clustered microcalcifications, most approaches to the
feature extraction for mammographic masses are based on
the lesion attributes that are used for lesion characterization
by radiologists. Radiologists characterize masses based on
their shape, the characteristics of their margin, and their op-
tical density.77 A broad range of techniques for the extraction
of features that resemble lesion attributes used by radiolo-
gists has been proposed. However, higher-order features that
do not directly resemble attributes used by radiologists are
also employed.

V.A. Shape

Based on a segmentation of the mass contour, several
groups employed basic morphological features to represent
the shape of a mass.46–48,52,78 Similar to the approaches used
to represent the morphology of individual calcification par-
ticles, these include the area and the perimeter as well as the
circularity, rectangularity, orientation, and eccentricity of the
mass. Furthermore, normalized central moments and mo-
ments of the border pixels of a mass are sometimes used to
represent the shape.46 Kilday et al.48 introduced a set of fea-
tures based on the normalized radial length �NRL� to repre-
sent the mass shape. The NRL is defined as the Euclidean
distance of each pixel on the object contour to the object’s
centroid. The NRL feature set was later evaluated and ap-
plied by several other groups.47,52,58,79 Another class of shape
features, which is often applied,46,59 is based on Fourier de-
scriptors of the mass’ contour.

V.B. Margin characteristics

Huo and co-workers50,80,81 proposed two features that
measure the amount of spiculation of a mass based on an
analysis of the radial gradient of its contour. Furthermore,
two features that describe the margin characteristics of a
mass have been proposed by Zheng et al.,79 who simply
obtained the standard deviation as well as the skew of the
gradient strength of the pixels on the contour of a mass.
Spiculated margins are a major characteristic of malignant
masses; hence, several groups proposed to apply texture
analysis on bands of pixels that are close to the margin of a
segmented mass. Extending this idea, Sahiner et al.53 devel-
oped a transformation called the rubber-band-straightening
transform �RBST� that transforms a band of margin pixels
onto the Cartesian plane. They showed that texture features
extracted from this transformed image, in which spiculations
approximately resemble vertical lines, are superior to texture
Medical Physics, Vol. 36, No. 6, June 2009
Texture features based on the RBST have later been applied
in some other approaches.82,83 The sharpness of a mass’ mar-
gin is recognized as an important mammographic lesion at-
tribute. Shi et al.60 developed a margin abruptness feature
that measures the margin sharpness using line detection in
RBST images. Rangayyan et al.46 also designed a feature
called acutance that measures the sharpness or abruptness of
the mass margin. Varela et al.63 proposed mass margin fea-
tures that measure the sharpness of the margin as well as the
presence of microlobulations. They found the performance of
the microlobutation features to be lower than the perfor-
mance of the sharpness features, which was expected as the
presence of microlobulations is known to be a less specific
attribute for the discrimination of benign and malignant
masses. Mudigonda et al.84 also proposed two gradient-based
features that measure the sharpness of a mass’ margin by
analyzing the image gradient in a ribbon of pixels surround-
ing the mass’ contour.

V.C. Optical density

The optical density of a mass is often represented by
simple features like the mean gray level of the mass region,
its local contrast, or by texture analysis features.63,79,80,85

V.D. Texture

Examples for higher-order features that do not represent
lesion attributes used by radiologists are features obtained by
texture analysis. Similar to feature extraction for clustered
calcifications, as described in the previous section, features
based on the gray-level co-occurrence matrix, gray-level run-
length metrics and wavelet decompositions have been popu-
lar choices for the characterization of masses.53,63,83,84,86–88

However, in contrast to the diagnosis of calcifications, in
mass CADx approaches, texture analysis is not always per-
formed on the full ROI but often only on special regions
within the ROI. Based on a segmentation of the mass from
the background, texture analysis is often restricted to the
mass region, excluding the background tissue region or on
bands of pixels close the mass’ margin.

V.E. Embedded calcifications

Mammographic masses, especially malignant ones, often
contain calcifications. For many types of mammographic
masses, the presence and the characteristics of embedded
calcifications are highly discriminative attributes. Still, only
few approaches to CADx of masses incorporate calcification
features. One of the few examples is the work of Shi et al.,60

who proposed to use an attribute that represents the number
of microcalcifications that are present in a mass ROI as a
feature.

V.F. Discussion

Features that measure the amount of spiculation and the
sharpness of the border seem to have the highest discrimina-
tive power for mammographic masses. The appearance of



TABLE III. A summary of strengths and weaknesses of three feature selection approaches.
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spiculations seems to be very variable, as the number, thick-
ness, and frequency of the spiculi vary considerably. A sys-
tematic study of the range of these parameters in spiculated
masses might help in the design and implementation of ap-
propriate lesion features. Again, direct comparisons of the
features developed by different research groups on the same
data are rare, and a large study that compares the discrimi-
native power of a broad variety of features on a large, public
dataset �like the DDSM �Ref. 89�� is still missing. Because
of the fact that the robustness of the segmentation results for
masses seems to be limited, the development of features that
do not require explicit segmentations might be an interesting
field for future research. Furthermore, the location of both
masses and microcalcification clusters in relation to mammo-
graphic landmarks �like the breast border or the pectoral
muscle� is a characteristic that is often neglected by CADx
approaches but seems to have considerable discriminative
power.

VI. FEATURE SELECTION

A well known machine learning problem is the fact that
classification or regression performance often decreases with
an increase in the feature space’s dimension. This effect,
which is called the “curse of dimensionality,” is due to the
fact that with increasing dimension of the feature space, the
distribution of instances becomes increasingly sparse. The
discriminative power of features employed in CADx systems
varies: While some are highly significant for the discrimina-
tion of mammographic lesions, others are redundant or even
irrelevant. Hence, automatic selection of a subset of features
from a higher-dimensional feature vector is a common mod-
ule in mammography CADx approaches, as well as in pat-
tern recognition systems in general.

Selecting the optimal feature subset for supervised learn-
ing problems requires an exhaustive search of all possible
subsets of features of the chosen cardinality, which is not
practical in most situations because the number of possible
subsets given N features is 2N−1 �the empty set is excluded�.
Hence, in practical machine learning applications, usually a
satisfactory instead of the optimal feature subset is searched.

There are two classes of practical approaches to feature
selection. Approaches of the first class are called filter ap-
proaches and are generally independent of the employed
classifier. In filter approaches, features are selected based on
a metric, which usually measures their discriminative power.
The second class of approaches, called wrapper approaches,
wrap the target classifier to find a good feature subset using a
nonexhaustive search strategy. Two wrapper approaches and
one filter approach are most commonly used in mammogra-

Method class Strengths

Genetic algorithms Can escape from loc
Forward/backward selection Efficient

Stepwise LDA Efficient
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phy CADx systems. Several groups employed genetic algo-
rithms �GAs� for the feature selection task in CADx
systems.12,70,75,79,82 Besides GAs, sequential forward selec-
tion and the related sequential backward elimination ap-
proaches, which both are sequential feature selection meth-
ods, are popular feature selection strategies in the CADx
community.32,67,78 A filter approach, selection using stepwise
linear discriminant analysis �LDA� is also a popular
method58–60,74,75,83 to decrease the dimension of the feature
vector.

The described feature selection techniques are heuristics
that retrieve a satisfactory and not a globally optimal feature
subset. The genetic algorithm approach is known to get stuck
in local minima less often than the other two approaches.
This is mainly due to the mutation operator, which adds a
stochastic element to the search strategy. In contrast the
search strategies of both sequential feature selection and
stepwise LDA are purely deterministic. However, the GA
approach needs careful adjustments of its parameters �the
mutation and crossover probabilities, the number of genera-
tions and individuals, etc.� and tends to evaluate more can-
didate feature sets which can be computationally expensive.
Table III summarizes the strengths and weaknesses of the
discussed feature selection approaches.

VII. CLASSIFICATION

The discrimination of benign and malignant mammo-
graphic lesions is a supervised learning problem, which is
defined as the prediction of the value of a function for any
valid input after training a learner using examples of input
and target output pairs. For the problem at hand, the function
has only two discrete values: Benign or malignant. Hence the
problem of discriminating benign and malignant lesions can
be modeled as a two-class classification problem.90 A variety
of classifiers have been applied in the state of the art CADx
approaches to solve this problem. The k nearest neighbors
classifier is not only one of the most commonly employed
classifiers for the discrimination of mammographic
lesions9,12,67,79,91 but also one of the simplest and most popu-
lar classifiers in general. Artificial neural networks �ANNs�
seem to be the most commonly used type of classifiers in
mammography CADx systems.12,14,32,50,63,65,66,71,74,80,88,92–95

Support vector machines32,65,88 and
LDA12,47,53,58–60,73,75,78,82,95,96 are also popular in the CADx
community. Examples of classifiers that are less frequently
applied in CADx systems include Bayes classification,36 gen-
eralized dynamic fuzzy neural networks,86 and rule-based ex-
pert systems.65 Furthermore, Wei et al.68 applied two state of
the art kernel-based classifiers, kernel Fisher discriminant,

Weaknesses

nima More parameters, needs careful adjustment
Often stuck in local minima
Often stuck in local minima
al mi



and relevance vector machines for the discrimination of solved in CADx approaches that incorporate temporal
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mammographic lesions. Moreover, they have investigated
several committee machines, like boosting and bagging,90 for
CADx approaches. Hadjiiski et al.83 investigated a hybrid
approach for the classification of mammographic lesions that
combines LDA with an adaptive resonance theory network
�an unsupervised, self-organizing neural network�.

While the mammographic lesion discrimination perfor-
mance of some classification approaches has been directly
compared,12,32,65,68 the results of these comparisons �which
are of course based on systems using different segmentation,
feature extraction steps and evaluated on different data� often
contradict. Hence, no distinctive conclusion about which
classifier is best suited for this task can be drawn. This find-
ing correlates with the observation that for most classifica-
tion problems the selection of features usually has more in-
fluence on the classification performance than the choice of
classifier.

VIII. TEMPORAL CHANGE ANALYSIS

Interval change analysis, the comparison of serial mam-
mograms for the detection and diagnosis of mammographic
lesions, is routinely used by radiologists in clinical practice.
The comparison of current and prior mammograms is re-
ported to significantly improve the performance of radiolo-
gists both in the detection97 as well as in the diagnosis of
mammographic lesions.98 Therefore, several groups investi-
gated the use of prior mammograms in CADe �Ref. 99� as
well as in CADx systems.100,101 Hadjiiski et al.100 used inter-
val change information for the classification of benign and
malignant masses. They extracted texture features from mass
ROIs cut from the prior and the current mammograms, as
well as difference features by subtracting the texture features
of the prior from the features of the current mammograms. A
comparison of this approach with a system that only used
features from the current mammogram resulted in a signifi-
cant increase in ROC performance �Az increased from 0.82 to
0.88�. Timp et al.101 also discussed how the inclusion of
temporal change information improves the performance of a
mass CADx system. Their approach includes two kinds of
temporal features: Difference and similarity features. While
difference features indicate the change in feature values de-
termined on prior and current views, similarity features mea-
sure to what extend two regions are comparable in appear-
ance and hence may be useful for lesions that are visible on
the prior view as well as for newly developing lesions. They
also found a significant increase in Az from 0.74 to 0.77
when temporal features were included in the classification.
Interestingly, they found that the proposed similarity features
particularly contributed to this increase in performance. This
led to comparable improvements both for masses that were
visible and those that were not visible on the prior view.
Finding corresponding masses in prior and current mammo-
grams and the registration �in terms of geometry and gray
scale� of prior �often screen-film mammography �SFM�� and
current �usually full-field-digital mammography �FFDM��
mammograms are important subproblems that need to be
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change information. However, this is a difficult task, as the
relative position and the appearance of a breast lesion is usu-
ally different during multiple examinations, due to the vari-
able compression and deformation of the breast tissue during
mammography. Sanjay-Gopal et al.,102 Filev et al.103 as well
as Timp et al.104 published work on the problem of finding
corresponding lesions. Snoeren and Karssemeijer105,106 as
well as Engeland et al.107 proposed solutions to the problem
of gray scale and geometric registration of serial mammo-
grams.

IX. MULTIVIEW AND MULTIMODAL CADx

Besides the inclusion of temporal change information into
CADx systems as discussed in Sec. VIII, the incorporation of
information from multiple mammographic views as well as
from complementary modalities �e.g., breast sonography,
breast MRI, and breast elastography� are important topics of
current and future CADx research. In breast cancer screen-
ing, usually the two standard mammography views CC and
MLO are acquired. Often additional views, like the mediolat-
eral �ML� view as well as special view mammograms �e.g.,
spot compression or spot compression magnification views�
are also available. Radiologists of course consider the ap-
pearance of a lesion in all available mammographic views, as
well as in the images acquired using complementary modali-
ties, in their diagnosis. Hence, CADx approaches should
probably do so as well. While several CADx systems pub-
lished so far consider information from the standard CC and
MLO views �e.g. Refs. 67, 68, 108, and 109�, systems that
include lesion features from additional views or even from
additional modalities are rare. Huo et al.110 investigated the
use of special view mammograms in the CADx of mammo-
graphic masses. Their results �Az=0.95 using the special
views, Az=0.78 and Az=0.75 using the CC and MLO views,
respectively� indicate that the CADx of special view mam-
mograms significantly improves the classification of masses.
However, the ROC performance that was achieved when all
three views were used �Az=0.95� was not higher than when
only the special view mammograms were used �Az=0.95�.
This indicates that the CC and MLO views might not add
significant diagnostic information to a system that already
includes spot compression or spot compression magnifica-
tion views. Drukker et al.111,112 proposed a multimodal
CADx approach that incorporates information from mammo-
grams and breast sonography. They found that the system’s
performance significantly improved when lesion features
from both modalities were combined. However, classifica-
tion performance depended on specific methods for combin-
ing features from multiple images per lesion �mean, mini-
mum, or maximum�. They achieved a maximum area under
the ROC curve of Az=0.95 for the multimodal system.

Fully automatic merging of information from multiple
mammographic views and multiple modalities of course re-
quires automatic methods for finding corresponding lesion
ROIs. Besides the work on finding corresponding lesions in
mammographic views already mentioned in Sec. VIII, addi-



tional work has been published by Engeland et al.113 which Burnside et al.127 investigated how well the lesion descrip-
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specifically considers the case of finding corresponding ROIs
in MLO and CC mammograms.

Finding corresponding ROIs in different modalities is an
even harder problem, still open for future research. Another
question that is not fully solved is how features extracted
from different views and modalities should be merged. Sev-
eral approaches have been proposed so far �e.g., Ref. 111�,
but a definitive guide still seems to be unavailable. Another
interesting topic is the effect of correlation when features
from multiple sources are combined. Theoretical investiga-
tions on this topic can be found in the work of Liu et al.114

X. CADx BASED ON HUMAN-EXTRACTED
FEATURES

Radiologists usually describe the attributes of a mammo-
graphic lesion using standardized lesion descriptions. In the
past years computer-aided diagnosis systems have been pro-
posed that use these kinds of lesion descriptions as human-
extracted input features for CADx systems. In this section an
overview of the CADx approaches based on human-
extracted features that have been proposed so far is given.
Early work dates back to 1993, when Wu et al.92 proposed to
use a set of 14 lesion descriptions extracted by radiologists
as input features for an artificial neural network for the
computer-aided diagnosis of mammographic masses and mi-
crocalcifications. They demonstrated that a simple three-
layer feed-forward ANN using human-extracted input fea-
tures can perform at a higher level than the average
performance of a group of radiologists.

Later CADx approaches using human-extracted input fea-
tures have usually been based on a standard set of lesion
descriptions which have been published in the BI-RADS™
�Ref. 69� atlas, a quality assurance guide designed to stan-
dardize breast imaging reporting, by the American College of
Radiology.

Baker et al.115,116 proposed an ANN approach to deduce
diagnosis proposals from BI-RADS™ lesion descriptions.
Their approach was later extended and evaluated by
others.93,117–120 Alternative approaches based on case-based
reasoning �CBR�, constraint satisfaction neural network, and
Bayesian networks were later proposed by Floyd et al.,121

Bilska-Wolak et al.,122,123 Tourassi et al.,124 and Fischer et
al.,125 respectively. The prime advantage of the CBR ap-
proaches over the earlier proposed approaches is the trans-
parent reasoning process that leads to the system’s diagnosis
suggestion. Elter et al.126 proposed to use an entropic simi-
larity metric to solve the problem of handling numerical and
categorical features in a CBR system for breast cancer diag-
nosis. They have furthermore demonstrated that decision tree
learners are a good alternative to the CBR approaches as the
induced models are also very easy to understand for the ra-
diologists. Recently, Gupta et al.96 investigated using
BI-RADS™ attributes from two mammographic views
�MLO and CC� as input features for a CADx system based
on a linear discriminant analysis classifier. Furthermore,
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tors for microcalcifications in the BI-RADS™ atlas are
suited to predict the risk of malignancy.

While mammography is the most important technique for
breast cancer diagnosis, supplemental modalities like sonog-
raphy or MRI are often applied in addition to mammography
for the diagnosis of some types of mammographic masses.
Hence it is no surprise that recent investigations by Jesneck
et al.95 suggest that the performance of CADx systems based
on human-extracted features can significantly be improved if
lesion descriptions from multiple modalities, like mammog-
raphy and sonography, are combined.

A common problem that all CADx approaches based on
human-extracted features face is the apparent inter- and in-
traobserver variability in lesion descriptions as described for
example by Baker et al.128 Recent work126 shows that the
performance of a CADx system based on BI-RADS at-
tributes that was trained on a mammography database com-
piled in a European institution decreased when it was applied
to data from the DDSM database which was compiled at US
institutions and vice versa. This finding suggests that the
performance of CADx systems based on human-extracted
features might be limited by the apparent interobserver vari-
ability in lesion descriptions.

XI. PERFORMANCE EVALUATION

Receiver operating characteristic �ROC� curve
analysis129–131 is the standard methodology for the evaluation
of the classification performance of CADx approaches. Most
CADx systems perform a two-class classification �a ROI
containing a lesion is either benign or malignant�. The per-
formance of such systems can be evaluated using classic
ROC curve analysis. However, the output of CADe systems
�automatically detected lesion ROIs� can also be used as in-
put for CADx systems. In this case, which has been rarely
considered so far,132 three classes have to be distinguished
�benign lesion, malignant lesion, and normal breast tissue�
and three-class extensions of ROC analysis have to be ap-
plied. Tables IV and V provide summaries of the ROC per-
formance of a representative selection of mass and calcifica-
tion CADx systems, respectively. However, it is not possible
to directly compare the classification performance of the
listed approaches because they have not been trained and
tested on the same data. Also note that besides the advance-
ments in CADx approaches over the past decade, no clear
trend of improving classification performance over time can
be identified in Tables IV and V. This is an indication that
ROC performance of CADx approaches strongly depends on
the evaluation dataset.

CADx systems are designed to support the radiologist in
the diagnosis of lesions by providing a diagnosis suggestion.
Therefore, it is important to evaluate if and how the diag-
noses of radiologists improve when CADx systems are used.
Observer studies using multireader, multicase ROC
analysis138 are the de facto standard approach to this prob-
lem. In the following we provide an overview of the CADx
observer studies published so far. Early observer studies have
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been published in 1999 by Chan et al.108 and Jiang et al.139

While the former evaluate the effects of a CADx system,
developed at the University of Michigan, on radiologists’
classification of masses, the later performed a similar evalu-
ation for a microcalcification CADx approach developed at
the University of Chicago. Both found statistically signifi-
cant improvements in ROC performance when CADx was
used as a diagnostic aid and concluded that their systems
have the potential to assist radiologists in the classification of
lesions and thus to potentially help to reduce unnecessary
breast biopsies. In a follow-up study, Jiang et al.140 demon-
strated that their CADx approach, moreover, has the poten-
tial to reduce the variability among radiologists in the inter-
pretation of mammograms, another problem of mammogram
interpretation. More recently, they compared the use of their
CADx approach with independent double reading by a sec-
ond radiologist141 and found significant improvements in
ROC performance when their CADx system was used but
only insignificant improvements when independent double
reading was performed. Moreover, they even found that
CADx improved diagnostic performance to an extent ap-
proaching the maximum possible performance. In another
follow-up study, Rana et al.142 applied the microcalcification
CADx system, developed by Jiang et al.139,140 on screen-film
mammograms �SFMs�, to full-field-digital mammograms.
They concluded that the CADx system maintained consis-
tently high performance in classifying calcifications in
FFDMs mammograms without requiring substantial modifi-
cations from its initial development on SFMs. Huo et al.109

and Leichter et al.143 later published observer studies for
mass CADx systems, developed at the University of Chicago
and the Jerusalem College of Technology, respectively. In
agreement with the work mentioned so far, they found that
CADx can improve the diagnostic performance of radiolo-

of mass CADx approaches. For each study, the year, the number of lesions
#l, the setup �single view, multiview, and multimodal� and the �image-
based� area under the ROC curve Az are listed. Note that direct comparisons
of the Az values are not reasonable as the CADx systems have been evalu-
ated on different databases.

Year # l Setup Az

Shi et al. �Ref. 60� 2008 427 Multiview 0.85
Guliato et al. �Ref. 133� 2008 111 Singleview 0.94
Delogu et al. �Ref. 134� 2007 226 Singleview 0.78
Varela et al. �Ref. 63� 2006 1076 Singleview 0.81

Drukker et al. �Ref. 111� 2005 100 Multimodal 0.92
Timp and Karssemeijer

�Ref. 62�
2004 1210 Multiview 0.74

Lim and Er �Ref. 86� 2004 343 Singleview 0.87
Sahiner et al. �Ref. 59� 2001 249 Single/multiview 0.87 /0.91

Mudigonda et al. �Ref. 84� 2000 39 Singleview 0.85
Huo et al. �Ref. 81� 2000 110 Singleview 0.82

Hadjiski et al. �Ref. 83� 1999 348 Singleview 0.81
Sahiner et al. �Ref. 53� 1998 168 Singleview 0.94

Huo et al. �Ref. 80� 1998 95 Singleview 0.94
Huo et al. �Ref. 50� 1995 95 Singleview 0.83
Medical Physics, Vol. 36, No. 6, June 2009
gists. Observer studies have also been performed to evaluate
a multimodal CADx approach as well as CADx approaches
based on serial mammograms �temporal change analysis�.
Horsch et al.112 evaluated the effect of a multimodal CADx
workstation, which analyses mammograms and breast sono-
grams, on the diagnostic performance of radiologists and
found significant improvements in ROC performance. Had-
jiiski et al.144,145 performed similar studies to evaluate a
CADx system based on serial mammograms and interval
change analysis, developed at the University of Michigan.
Again, significant improvements of the radiologists’ diagno-
sis accuracy are reported. Table VI provides an overview on
the CADx observer studies mentioned above. Studies with
special topics �e.g., interobserver variability,140 comparison
with double reading,141 and SFM versus FFDM �Ref. 142��
are omitted.

While considerable evidence has been collected that
CADx system have the potential to improve the diagnostic
performance of radiologists, still no commercial CADx sys-
tem is available today and open issues remain. The studies
published so far are retrospective studies performed on rela-
tively few cases �cp. Table VI�. Hence, large prospective
studies are still needed to further evaluate the effect of CADx
systems on radiologists. Moreover, additional research on
how exactly radiologists interact with CADx systems and
how this interaction can be improved �e.g., by including
semiautomatic modules, displaying reference lesions, includ-
ing relevance feedback in lesion retrieval� would be interest-
ing.

XII. CONCLUSION

The CADx community has made considerable progress
on all aspects of mammography CADx systems in the past
two decades. However, several open issues remain. Most no-

microcalcification CADx approaches. For each study, the year, the number
of lesions #l, the setup �single view, multiview, and multimodal�, and the
�image-based� area under the ROC curve Az are listed. Note that direct
comparisons of the Az values are not reasonable as the CADx systems have
been evaluated on different databases.

Year # l Setup Az

Karahaliou et al. �Ref. 135� 2007 100 Singleview 0.96
Weit et al. �Ref. 68� 2005 386 Multiview 0.85

Papadopoulos et al. �Ref. 65� 2005 105 /25 Singleview 0.79 /0.81
Soltanian-Zadeh et al. �Ref. 70� 2004 103 Singleview 0.89

Leichter et al. �Ref. 136� 2004 324 Singleview 0.87
Kallergi et al. �Ref. 66� 2004 100 Singleview 0.98
Salfity et al. �Ref. 29� 2003 131 Multiview 0.93

Markopoulos et al. �Ref. 94� 2001 240 Singleview 0.94
Veldkamp et al. �Ref. 67� 2000 280 Singleview 0.83

Chan et al. �Ref. 75� 1998 145 Singleview 0.89
Buchbinder et al. �Ref. 137� 1998 161 Singleview 0.88

Chan et al. �Ref. 74� 1997 86 Singleview 0.88
Betal et al. �Ref. 31� 1997 38 Multiview 0.84
Jiang et al. �Ref. 10� 1996 107 Singleview 0.83

Dhawan et al. �Ref. 12� 1996 191 Singleview 0.86



TABLE VI. Overview of CADx observer studies that investigate whether CADx improves the ROC performance
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tably, the progress that is made by newly proposed algo-
rithms often is hard to measure due to the lack of direct
comparisons of the performance of competing approaches on
consistent and publicly available data sets. Such comparisons
of course would not only require more publicly available
reference databases but also that CADx researchers evaluate
their algorithms on these data sets or on clearly defined sub-
sets. While the DDSM database89 provides a large public set
of screen film mammograms, unfortunately no comparable
reference database of modern full-field-digital mammograms
is publicly available today. Because the performance of a
CADx approach can vary dramatically over different data-
bases, as it depends on factors such as the number and
subtlety of the cases, standardized evaluation databases and
evaluation techniques are crucial factors for the comparison
of competing CADx approaches.

The CADx of mammographic lesions remains a challeng-
ing task. Especially the robust automatic segmentation of
mammographic lesions is far from trivial. Particularly chal-
lenging are the accurate segmentation of mammographic
masses with ill-defined or obscured borders and the segmen-
tation of microcalcification particles with low contrast to the
background tissue.

Furthermore, besides the classification performance, the
transparency of the decision process of a CADx system to
the radiologist, which is believed to strongly influence the
probability that a given CADx system is accepted by radi-
ologists in clinical practice, is another important factor in the
design of CADx systems. Systems that are built on case-
based reasoning, for example, seem to be more intelligible to
the radiologist than systems based on neural networks or

of radiologists. For each study, the lesion type lt �m
number of lesions #l, the setup �single view, multivie
of area under the ROC curve Az of the observers with
instead of the average, the range of the observer’s A

Year lt # o # l

Chan et al. �Ref. 108� 1999 m 6 103
Jiang et al. �Ref. 139� 1999 c 10 104

Leichter et al. �Ref. 143� 2000 m 1 40
Huo et al. �Ref. 109� 2002 m 12 110

Hadjiski et al. �Ref. 144� 2004 m 10 97
Hadjiski et al. �Ref. 145� 2006 m 10 90
Horsch et al. �Ref. 112� 2006 m 10 97

TABLE VII. A summary of demands for future CADx research and major ch

Research topic Urgent demands

Validation Freely available data and tools
Segmentation Robust automatic segmentation

Feature extraction Large comparative study
System Integrate information from multiple views

modalities and prior examinatio
User interaction Intuitive interfaces
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support vector machines. Improved human-computer interac-
tion of CADx systems, in general, is an interesting field for
future research, as most CADx systems proposed so far are
one-size-fits-all tools.

FFDM is currently replacing analog SFM in clinical prac-
tice. FFDM is known to have higher contrast but lower res-
olution than SFM. While initial results suggest that CAD
approaches developed on SFMs can be applied to FFDM
with minor modifications,142,146 more researches on the im-
plications of the adoption of FFDM on both CADe and
CADx approaches are required.

Radiologists usually consider information from multiple
mammographic views, prior mammograms, complementary
modalities �e.g., ultrasound and MRI� and clinical patient
data in their diagnosis of a breast lesion. Hence, CADx sys-
tems should probably do so as well. While considerable
progress has been made on integrating prior mammograms
�temporal change analysis�, features from additional modali-
ties and patient data into CADx approaches, the CADx sys-
tem of the future should incorporate all available sources of
information into the decision making process. This not only
requires the integration of the various CADx approaches that
have been developed independently so far but also seamless
integration of CADx systems into the clinical IT infrastruc-
ture �e.g., PACS, RIS, and HIS� for access to all required
data. Furthermore, robustly finding corresponding ROIs de-
picting a lesion in different views and modalities is an un-
solved problem.

Table VII summarizes some open research topics, urgent
demands for further research and major challenges.

Even though CADx approaches have matured consider-

or calcifications�, the number of observers #o, the
poral change analysis, multimodal� and the average

nd with the CADx aid are listed. For the first study,
es is listed.

Setup Az without CAD Az with CAD

Singleview �0.79,0.92� �0.87,0.96�
Singleview 0.61 0.75
Singleview 0.66 0.81
Multiview 0.93 0.96

tiview, temporal 0.79 0.84
tiview, temporal 0.83 0.87
Multimodal 0.87 0.92

ges.

Major challenges

Consensus, costs
Accurate segmentation of masses with ill-defined or

obscured borders
Development of segmentation-independent features

itional Robust registration of lesions in different views and
modalities

Seamless integration in clinical workflows
asses
w, tem
out a

z valu

Mul
Mul
, add
ns



ably in the past years, still no FDA approved system is on the
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market and in clinical use today. One reason is that the use of
CADx systems as diagnostic aids has very serious implica-
tions on the patient management and thus almost perfect per-
formance is required. While the positive effect of CADx sys-
tems on the diagnostic performance of radiologists has been
demonstrated in several observer studies, in contrast to
CADe systems, large prospective clinical studies are still
missing.
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